

UNIVERSITY OF NORTH BENGAL B.Sc. Honours 6th Semester Examination, 2021

CC13-MATHEMATICS

RING THEORY AND LINEAR ALGEBRA-II

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

Answer *all* questions from the following

 $2 \times 5 = 10$

- 1. Let $\mathbf{B} = \{\alpha_1, \alpha_2, \alpha_3\}$ be the basis of C^3 defined by $\alpha_1 = (1, 0, -1), \alpha_2 = (1, 1, 1), \alpha_3 = (2, 2, 0)$. Find the dual basis of \mathbf{B} .
- 2. Show that $\sqrt{-3}$ is a prime element in the integral domain $\mathbb{Z}[\sqrt{-3}]$.
- 3. Find the orthogonal complement of $W = \text{span} \{(1, 1, 1)\}$ in the Euclidean space \mathbb{R}^3 with standard inner product.
- 4. Let (|) denotes the standard inner product on \mathbb{R}^2 . Let $\alpha = (2, 1)$, $\beta = (1, -1)$. If μ is a vector such that $(\alpha | \mu) = 3$, $(\beta | \mu) = 2$, then find μ .
- 5. Show that 1-i is irreducible in $\mathbb{Z}[i]$.

GROUP-B

Answer *all* questions from the following $10 \times 3 = 30$

- 6. (a) Use Gram-Schmidt process to obtain an orthogonal basis from the basis $\{(1, 0, 1), (1, 1, 1), (1, 3, 4)\}$ of Euclidean space \mathbb{R}^3 with standard inner product.
 - (b) Let \mathbb{R}^3 be a Euclidean space with standard inner product and $T: V \to V$ be defined by T(x, y, z) = (x+2y, x-z, x+3y-2z). Find T^* , adjoint of T.

	(1	1	1	0)	
(c) Find on orthonormal basis of the row mass of the matrix	2	3	1	1	
Find an orthonormal basis of the row space of the matrix	1	2	3	1	•
	0	1	2	1)	

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHCC13/2021

- 7. (a) Find all the maximal and prime ideals of \mathbb{Z}_{10} .
 - (b) Let D be a Euclidean domain with Euclidean valuation v. If a | b and v(a) = v(b), prove that a and b are associates in D.
 - (c) Is the integral domain $\mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} : a, b \in \mathbb{Z}\}\)$, a unique factorization domain? Justify your answer.
- 8. (a) Find a 3×3 matrix for which the minimal polynomial is x^2 .
 - (b) Let T be a linear operator on \mathbb{R}^4 which is represented in the standard basis by the matrix.

(0	0	0	0
a	0	0	0
0	b	0	0
0	0	с	0

Under what conditions, T is diagonalizable?

GROUP-C

Answer *all* questions from the following $5 \times 2 = 10$

9. (a) Find the eigen values and corresponding eigenspace of the matrix kI_5 . Generalize 4+1 the result for the matrix kI_n .

(b) Show that the matrix $\begin{pmatrix} 1 & 0 \\ 5 & 1 \end{pmatrix}$ is not diagonalizable.

10. If N_1 , N_2 be any two normal operators such that either permutes with the adjoint 5 of the other, then prove that $N_1 + N_2$ and N_1N_2 are normal.

GROUP-D

	Answer all questions from the following					ing	$5 \times 2 = 10$
11.	Find the minimal polynomial of the matrix	$ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} $	0 1 0 0	0 0 2 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 2 \end{pmatrix}$		5

- 12.(a) Use Cayley-Hamilton theorem to find A^{70} , where $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. 2+3
 - (b) Let R be a ring of all real valued continuous functions defined on [0, 1] and $M = \{f(x) \in R : f(1/5) = 0\}$. Prove that M is a maximal ideal of R.

-×_

3+3+4

5 + 5