

UNIVERSITY OF NORTH BENGAL

B.Sc. Honours 6th Semester Examination, 2021

CC13-Mathematics

Ring Theory and Linear Algebra-II

Full Marks: 60

ASSIGNMENT

The figures in the margin indicate full marks. All symbols are of usual significance.

GROUP-A

Answer all questions from the following

1. Let $\boldsymbol{B}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ be the basis of C^{3} defined by $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,1,1)$, $\alpha_{3}=(2,2,0)$. Find the dual basis of \boldsymbol{B}.
2. Show that $\sqrt{-3}$ is a prime element in the integral domain $\mathbb{Z}[\sqrt{-3}]$.
3. Find the orthogonal complement of $W=\operatorname{span}\{(1,1,1)\}$ in the Euclidean space \mathbb{R}^{3} with standard inner product.
4. Let (\mid) denotes the standard inner product on \mathbb{R}^{2}. Let $\alpha=(2,1), \beta=(1,-1)$. If μ is a vector such that $(\alpha \mid \mu)=3,(\beta \mid \mu)=2$, then find μ.
5. Show that $1-i$ is irreducible in $\mathbb{Z}[i]$.

GROUP-B

Answer all questions from the following
6. (a) Use Gram-Schmidt process to obtain an orthogonal basis from the basis $4+3+3$ $\{(1,0,1),(1,1,1),(1,3,4)\}$ of Euclidean space \mathbb{R}^{3} with standard inner product.
(b) Let \mathbb{R}^{3} be a Euclidean space with standard inner product and $T: V \rightarrow V$ be defined by $T(x, y, z)=(x+2 y, x-z, x+3 y-2 z)$. Find T^{*}, adjoint of T.
(c) Find an orthonormal basis of the row space of the matrix $\left(\begin{array}{llll}1 & 1 & 1 & 0 \\ 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & 1\end{array}\right)$.

UG/CBCS/B.Sc./Hons./6th Sem./Mathematics/MATHCC13/2021

7. (a) Find all the maximal and prime ideals of \mathbb{Z}_{10}.
(b) Let D be a Euclidean domain with Euclidean valuation v. If $a \mid b$ and $v(a)=v(b)$, prove that a and b are associates in D.
(c) Is the integral domain $\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5}: a, b \in \mathbb{Z}\}$, a unique factorization domain? Justify your answer.
8. (a) Find a 3×3 matrix for which the minimal polynomial is x^{2}.
(b) Let T be a linear operator on \mathbb{R}^{4} which is represented in the standard basis by the matrix.

$$
\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0
\end{array}\right)
$$

Under what conditions, T is diagonalizable?

GROUP-C

Answer all questions from the following

9. (a) Find the eigen values and corresponding eigenspace of the matrix $k I_{5}$. Generalize the result for the matrix $k I_{n}$.
(b) Show that the matrix $\left(\begin{array}{ll}1 & 0 \\ 5 & 1\end{array}\right)$ is not diagonalizable.
10. If N_{1}, N_{2} be any two normal operators such that either permutes with the adjoint of the other, then prove that $N_{1}+N_{2}$ and $N_{1} N_{2}$ are normal.

GROUP-D

Answer all questions from the following

11. Find the minimal polynomial of the matrix $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right)$.
12.(a) Use Cayley-Hamilton theorem to find A^{70}, where $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.
(b) Let R be a ring of all real valued continuous functions defined on [0, 1] and $M=\{f(x) \in R: f(1 / 5)=0\}$. Prove that M is a maximal ideal of R.
\qquad
